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Abstract: A small-signal gain analysis of the planar dielectric Cherenkov maser is 

presented. The analysis results in a Pierce gain solution, with three traveling-wave 

modes. The analysis shows that the dielectric cherenkov maser has remarkable broad- 

band tuning ability near cutoff, while maintaining reasonble gain rates. Numerical 

simulations verifying the small-signal gain results are presented, using a new particle-in- 

cell code written specifically for planar traveling-wave tubes. Instantaneous bandwidth is 

numerically shown to also be very large, and saturated efficiency for a nominal high- 

power design is shown to be in the range of standard untapered traveling-wave tubes. 

I. Analysis 

Traveling-wave interactions between electron beams and waveguide modes in 

dielectrically loaded waveguides have been studied in detail for some time. These types 

of devices are commonly known as dielectric Cherenkov masers (DCMs). The basic 

principle of operation is based on slowing down the phase velocity of the waveguide 

mode by lining the waveguide with a dielectric until it is synchronous with the electron 

beam velocity, and then the waveguide mode and electron beam interact in a manner 

essentially the same as in the common traveling-wave tube (TWT) [1,2]. As with all 

TWT interactions, the DCM interaction is capable of high power, high gain, and large 

bandwidth. The traveling-wave interaction between an electron beam and an rf mode 

with a uniform phase velocity is not particularly high, typically 20-30% [3], but this base 
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efficiency can be greatly increased by tapering the phase velocity of the waveguide mode 

and using a multi-stage depressed collector. An X-band DCM with a tapered dielectric 

had simulated efficiencies of 37%, and experimentally yielded an output power of 280 

MW [4]. Tapering the dielectric will tend to reduce bandwidth, and a careful tradeoff 

must be made tailored for the specific application. 

Most previous work on DCMs has been focused on producing high power, varying in 

frequency up to 100 GHz. In addition, all previous work has focused on DCMs with 

cylindrical geometries. New emerging low-power communication needs has motivated a 

study of low-power DCMs with low fabrication cost. An attractive potential 

configuration is to use a planar DCM with a low-power electron beam generated by field 

emitter arrays (FEAs) [ 5 ] .  An electron source using the emerging FEA technology 

instead of a conventional thermionic electron gun technology has smaller size and less 

weight, both key advantages for low-power communication tubes. Issues with using 

FEAs have been addressed in previous experimental programs, and a pencil-beam 4.5 

GHz TWT with 17% extraction efficiency and 35 dB of gain has been demonstrated at 

Northrup Grumman [6]. Cathode loadings in excess of 10 .A/cm2 have been 

demonstrated [5 ,6] .  FEAs have already demonstrated total beam currents on the order of 

1 A for cylindrical beams. 

Use of the DCM interaction provides great tunability range (by varying the beam 

voltage), with reasonable gain and the potential for satisfactory efficiency (with tapering 

and a depressed collector). The planar geometry provides scalability to large-scale 

microfabrication techniques, resulting in low fabrication cost. An alternative planar 

source geometry also suitable for large-scale microfabrication is to use a sheet electron 

beam in a rippled waveguide. This type of TWT tends to have higher gain and can 

operate at a higher frequency for the same beam voltage [7], but does not have the wide 

tunibility range of the DCM. For many low-power communication applications, the 

planar DCM would be a better choice. 
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For scaling studies, a simple analytic formula for the gain is desirable. The primary goal 

of this paper is to provide such a simple gain formula, for a planar DCM. To verify the 

small-signal results, a particle-in-cell (PIC) code, TUBE, was developed for simulating 

the planar DCM interaction. This code uses an unusual charge-conserving current 

algorithm [8] to eliminate the Poisson solve step in the field advance. This code is 
described in detail in this paper. In the final section of this paper, a high-power 

simulation case is presented, demonstrating the large range of accuracy of the small- 

signal gain formula derived earlier. 

11. Small-signal gain analysis 

We consider the geometry shown in Fig. 1, where a planar electron beam of width A 

travels down a waveguide of infinite transverse width with total half-width rw.  A 

dielectric liner is placed between the vertical positions rd and rw . The region below rd 

is referred to as I and the region between rd and rw is referred to as 11. The dielectric 

material has total dielectric constant &,.EO, where EO is the permittivity of free space, 

We limit this analysis to TM modes, where there is only a horizontal component to the 

magnetic field. We also assume an exponential dependence of e j ( o t - k z ) ,  and where 

w / k needs to be close to the beam velocity vo for proper synchronism. Use of the wave 

equation immediately gives 

and 

where 
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2 0  2 2  hi =----k 
2 c 

which is less than zero and 

2 
h$=--;;.&,.--k w 2 , 

(3) 

(4) 

which needs to be greater than zero. 

Two useful relations relating the electric field to the horizontal magnetic field is given by 

and 

We find the dispersion relation for this interaction by using Gauss’ law at the beam, and 

the conduction boundary condition at rw (axial electric field vanishes), and matching the 

region solutions at rd (the axial electric field is continuous and the radial electric field 

times E is continuous). 

Gauss’ law at y = 0 yields 
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The rf charge density p is related to the axial electric field by 

where po is the DC charge density, e is the electronic charge, m is the electronic mass, 

and y is the relativistic mass factor. 

Equations (1)-(4) give this relation between the constants for region I: 

3 Using IA = 4n~omc  / e  and recognizing that the total beam current is I = -vopoAW 

where W i s  the beam width, this becomes 

For convenience, we will define 

The boundary condition at rw gives us 
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and we will additionally define 

The axial boundary condition at rd is 

(-all sin(hnrd)+ bl cos(hl1rd 

and the radial boundary condition is 

(al l  cos(h~~rd)+  bl sin(hllrd))&, = (a11 cos(hlrd)+ bl sin(h1rd)) . 

These equations immediately reduce lo the dispersion relation 

or 
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At this point, we will find the cold synchronism equation by assuming that CI vanishes 

and that rd is very small (relative to a free-space wavelength). The idea is to first find a 

rough relation between w and k, and then to expand about this cold solution in the 

presence of a small-current beam as a perturbation. 

For small rd and no current, the dispersion relation reduces to 

We know that hlI(rw - r d )  must be close to 7 ~ 1 2 ,  so the left-hand side of Eqn. (19) 

reduces to 

where we are using D = (rw - r d )  for the depth of the dielectric liner. We can solve the 

above equation for h~ , yielding 

Using Eqn. (4) and invoking single-particle synchronism ( k  = W / V O ) ,  we get this 

relation: 

or 
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This equation establishes the synchronous frequency of the dielectric-loaded TWT, given 

beam velocity, relative pemiittivity, and dimensions of both the waveguide and dielectric. 

Now we want to find the gain for nonzero current. We do this by going back to Eqn. 

(17), but now with CI small, but nonzero. The new reduced dispersion relation is now 

where we have collected several constants into K. 

We assume we can write the wavenumber as 

k = k o + &  , 

where 

and is the cold synchronism wavenumber. 

k Using 6hll == ---a and expanding to first order, we have 
hII 
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or 

Putting the constants back in, we have 

( I  I’ IA)2xc3 
= -  h;I ( I  I’ I A ) ~ ~ c  - (. I’ 2)2 =-C3 , (29)  

3 
- _  

( E ,  D + .d)3 (a / VO) wv; y 3  

where we have defined the Pierce constant C in terms of the constants. 

wavenumber for the growing mode is then 
The total 

and the exponential gain goes as 

(31) C z l 2  e 

Note that the above perturbation analysis is valid as long as C << a I‘ vo and is only 

strictly valid at the single-particle synchronism; for low-power applications at the 

frequences that we are interested in (-100 GHz), these are not an important limitations. 

The loss introduced by an imaginary component of the dielectric constant can be found 

from Eqn. (22) .  Taking derivatives, we find 
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For large dielectric constants, we can ignore the second term, and the modified 

wavenumber becomes 

The wide resonance dependence on beam voltage is shown in Fig. 2, for various relative 

permittivities, using Eqn. (23). Relatively small voltage changes near E,  - dc/vo can 

lead to very large frequency changes, leading to an extremely large tunable bandwidth 

with little changes in the beam voltage. The practical limitation on how close to the knee 

a DCM can operate will be established by voltage tolerances and physical energy spread 

on the electron beam. 

In Fig. 3, we plot gain versus dielectric constant for a 1 A beam at 75 kV. Relatively 

high gains (1 dB/cm) are achievable. In Fig. 4, we plot gain versus beam voltage, for a 1 

A beam and a dielectric with a relative permittivity of 30. 
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111. Description of Traveling-Wave-Tube Simulation Code 

A new variant of the ISIS particle-in-cell (PIC) code [9] was generated for simulating the 

planar DCM device. This new code, TUBE, was written in order to tailor the simulation 

specifically for the traveling-wave interaction, increasing computation speed. 

Specifically, less dense particle injection is needed for modeling traveling-wave tubes 

than for general plasma problems. The electromagnetic fields are solved on a grid using 

Maxwell’s curl equations, as done by Shintake [ 101 for klystron simulations. The general 

proceedure of evolving the electromagnetic fields is well known [l l] ,  but will be 

described below for clarity. 

A typical issue in PIC codes is ensuring conservation of charge. Analytically, this is 

guaranteed by the magnetic field curl equation and the continuity equation; however, 

when these equations are discretized on a mesh in a PIC simulation, numerical errors lead 

to a (typically) linear increase in the error in the fields. This is because the discretized 

current density that actually conserves charge is not a linear weighing of the movement of 

charge on the mesh. In fact, it cannot be generated by just using the instantaneous 

movement of charge on the mesh. This effect is well known [l l-131 and the usual 

technique to correct this is requires a separate Poisson solve step each time the 

electromagnetic fields are evolved. 

In 1968 Buneman suggested a charge-conserving current algorithm [ 141, where the 

current density used in the magnetic field curl equation is derived by explicitly finding 

what is required to conserve charge, where each particle in the simulation is a point 

particle. Morse and Nielson [12] wrote an improved two-dimensional version of this 

idea, using particles with rectangular shape. Both of these techniques lead to noise in the 

simulations because there is a sudden impulse in the current density when a particle 

crosses from one cell in the mesh to another [13]. The level of noise in these simuIations 

still required a Poisson solve to maintain stability. Jones [8] reduced the noise 

dramatically by using triangular shaped particles (pyramidal in two-dimensional 
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geometries), which does not require a Poisson solve, and is the charge-conserving current 

algorithm used in the ISIS code. Because this algorithm executes very efficiently, it was 

adapted for TUBE. 

A PIC code is required for accurate traveling-wave tube simulations because of the 

importance of space-charge forces in many possible DCM configurations. The 
importance of space charge is easily shown by considering the potential depression of a 

planar beam in a planar waveguide. 

The potential depression for an infinitely thin sheet beam in a waveguide of half-height 

rw is given by 

where 

q+,, is the beam potential, and yinj is the relativistic mass factor corresponding to the 

injection voltage. Rewriting this, we have 

Following references 1 5 and 16, we can differentiate this with respect to $b to get 

maximum allowable current, the space-charge limited current. We find that 1, is 

maximized when 

12 



and is given by 

Rewriting this in terms of minimum transmittable beam energy for a given peak current 

we get: 

This expression is important because the maximum power we can extract is given by 

where 1, is the beam's harmonic current. If we consider a 15 A sheet beam that is 1 cm 

wide in a 2-mm high waveguide (with no dielectric liner), the minimum allowable mass 

factor ymin is 1.0101, or the minimum allowable beam energy (kinetic plus potential 

depression) is 5.2 kV. Thus, for a beam injected at 10 kV, only 4.8 kV of kinetic energy 

can be extracted (less if there is significant beam bunching), before a virtual cathode is 

formed. To minimize this effect, a small waveguide height and a high beam voltage are 

desired. 

In order to ensure that the space-charge fields are found with sufficient accuracy, the 

electromagnetic fields are solved on the grid shown in Fig. 5.  The fields are evolved in 

time by explicitly solving discrete versions of the curl equations - = -'?x 2 and aB 
at 
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!!? =: c2(Gxg - p o j )  for each cell on the PIC grid. The grid locations for TM mode 
dt  

components are shown in Fig. 6, for grid cell (i,j). 

The electric and magnetic fields are separately evolved simultaneously (leapfrogging 

leads to an instability). After time stepping the fields, boundary conditions are 

established by setting by making E, or E, vanish on the conduction boundary. The 

upstream and downstream ends of the beam pipe are made to be conducting surfaces 

(shown in Fig. 5) .  This guarantees evolving the correct potential depression for the beam 

as it is injected through the upstream boundary. The simulation starts with 2 = i = 0 

everywhere, and the beam current follows an exponential increase from zero over several 

rf periods to steady state. The fields from an initial rf cavity is superimposed onto the 

space-charge fields to supply the input for the traveling-wave interaction. 

It is simple to show that the divergence equationsv - E and v .  $ are satisfied by the curl 

equations and the initial conditions on the fields [l l] .  The 9 . i  equation is satisfied 

trivially: 

3 j  4 -  - 
(41 1 3 -  

at at 
-(V .B)= V .  - = -V.  V x  E = 0 , 

The conservation of charge equation, ?. E ,  requires use of continuity equation [ 1 13, 

aP - . . +  
V . , J = - -  , 

at 
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Thus numerical conservation of charge is equivalent to ensuring that the numerical form 

of the continuity equation is satisfied. Unfortunately, simple assignment of charge and 

current density onto the grid starting with the physical particle positions and their 

instantaneous movement with any weighing scheme will not satisfy it. The current 

density assigned to the grid must in fact be derived from requiring that the discrete 

continuity equation be satisfied. 

Morse’s and Nielson’s charge-conserving current algorithm can be easily described for 

the one-dimensional case, pictured in Fig. 7, following the discussion in reference 8. The 

charge density is assigned to the grid intersection points and the current density is 

assigned to locations at the centers of the grid cells. The charge density is assigned at the 

standard time-step intervals and the current density is assigned at half time-step intervals. 

The charge weighing on the grid is assumed to be linear. A particle with charge q in cell 

Ax 

dx 
i distributes a charge q at grid intersection point i and - q at grid intersection 

point i+l, where dx is the grid spacing and Ax is the distance the particle is from grid 

intersection point i. If the particle does not change cells during a time step of duration 

dt , current is only assigned to location i ,  and is given by q6 l d t  for a movement 8 .  

This assignment explicitly satisfies the discrete version of the continuity equation 

Y (44) 
p(i,t + d t )  - p( i , t )  - _  J(i , t  + dt 12) - J(i - 1, t + dt I 2 )  - 

dt dx 

where p is the charge density assigned to grid intersection point i at time t ,  and J is the 

current density assigned to mid-grid point i at time t + d t / 2 .  For this case, 

J(i - 1,t i- dt / 2) is zero and the continuity equation is satisfied. 

Now consider the case where the particle moves from cell i to cell i+l during the time 

interval t to t+dt, from location Axi in cell i to location h j + 1  in cell i+ l .  The discrete 

continuity equation is satisfied with these assignments: 

15 



p(i,t) = (1 - 2) 

p(i,t  + dt )  = 0 

h i  

dx 
p(i -t- 1, t )  = - q 

p ( i + l , t + d t ) =  

p(i -I- 2,t)  = 0 

4 
h i t 1  p( i+2 , t+d t )=-  
dx 

J(i , t  + d t / 2 )  = [ 1--- 2 )  q- d x + h ; l - h i  

(45) 

(46) 

(47) 

and 

(52) 
h i + l  dx + h i + l  - h i  

J(ii-l7t+dt/2)=-----q- 
dx dt 

Some noise is generated by the linear weighting of the particles. This noise is greatly 

reduced by using a triangular particle shape and quadratic weighing [8]. 

When a particle moves diagonally into cells that touch at corners in a two-dimensional 

grid, there is an ambiguity - did the particle first move vertically into a new cell and then 

horizontally into the final cell, or did the particle first move horizontally and then 

vertically. Each path leads to different discrete current densities from the continuity 
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equation. For the algorithm used in ISIS and TUBE, it is assumed that half of a particle’s 

charge takes one path and that half takes the other path [8]. 

The PIC simulation needs smoothing and damping to eliminate noise and numerical 

instabilities. This noise arises from many areas, and the two major effects are: 

1. 

2. 

Noise from reflections off the metallic boundaries of high-harmonic field modes. 

Grid instability from the roll-off of the dispersion relation for waveguide modes 

with wavelengths on the order of the mesh size. 

To address these problems, TUBE uses two smoothing and damping algorithms. The 

first is to numerically include lossy material at both upstream and downstream 

boundaries, using the equations 

or 

a2 - - .... 
- = - V X E - U ~ B  . 
at 

(54) 

The second technique is two stage smoothing, as used in Shintake’s code FCI [lo]. 

Smoothing is done in two successive steps, using the equations 
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The second step is a compensation step to regain higher harmonic content. The resulting 

transfer function from this smoothing is given by G = 1 - - ( ~ A z ) ~  , which translates to 

less than 1% amplitude loss at the 3'd harmonic, for typical grid spacings [lo]. 

1 
16 

We can veriCy the numerical stability of the simulation model (including the charge- 

conserving current algorithm) by considering the case with no rf input drive. In Fig. Sa 

we plot the vertical elcctric field at a position above the beam. The field is stable, in the 

sense of both nongrowing and nonoscillating. This simulation is for a sheet beam of 15 

A per cm width in a 2 mm high waveguide, for a total length of 12 cm. The vertical 

electric field is measured 0.5 mm from the top wall, at a length of 6 cm. The beam 

voltage is 25 1tV. This case corresponds to simulations in the next section, except that the 

beam voltage is lower; this was done to increase the relative potential depression of the 

simulation. In Fig. 8b, we see that the potential depression of the beam is symmetric 

between the conducting endplates of the simulation region and well behaved. 

IV. Numerical Simulations Showing Gain and Saturation 

In this section, we consider the case of a 15-A, 1-cm wide beam in a 2-mm high 

waveguide, injected at 140 kV. The generation and transport of this 2.1 MW beam has 

been considrxed for a W-band klystron, and is credible using current technology [17]. 

We will assume that a dielectric of width 0.54 mm is lining the waveguide, with 

dielectric constant 30. In this section, we present a relatively high power case, to show 

the range of the small-signal gain formula and to show a more interesting PIC simulation. 

The analytic theory of the second section yields a single-particle resonance at 25.7 GHz, 

with a gain of 0.38 dH/m. Gain results from a frequency scan using TUBE are shown in 

Fig. 9. Although the analytic gain prediction is nearly exact (at 25.7 GHz), the peak of 

the gain curve is higher (over twice as high) at a somewhat higher frequency. Recall that 

the analytic formula assumed the single particle resonance k = w / vo , to establish a value 

for k, between the left-hand side and the right-hand side of Eqn. (29). The left-hand side 
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is very accurate for all k, however, k in general requires solving a transcendental 

equation. For low power cases, k is very close to the single-particle resonance for all 

modes with gain. However, as the beam current is increased, k can change from that, as 

the resonance is between the rf mode’s phase velocity and the slow-space-charge wave of 

the beam. This effect is seen in this simulation, and the maximum gain occurs off the 

single-particle resonance. 

In Fig. 10, we show the particles’ modulation exponential increase as a function of axial 

location, for the peak gain of 1.2 dB/cm, at 28.7 GHz. For the case shown in Fig. 1 1, the 

input drive was increased, and saturation was reached over a length of 12 cm. The 

extraction efficiency for this case (also at 28.7 GHz) is nearly 20%. 

These simulations verify the key aspects of planar DCM design and operation. First, the 

analytic theory accurately predicts the gain at the frequency corresponding to single- 

particle synchronism. Next, maximum gain occurs at a frequency that deviates from the 

single-particle synchronism, but is of the same order of magnitude, even for very high- 

power cases. Finally, the extraction efficiency of this device is similar to others with 

traveling-wave interactions, on the order of 15-25% for an untapered device. 

In addition, we have demonstrated the operation and stability of a PIC code tailored for 

sheet-beam TWT interactions, using a noiseless charge-conserving current algorithm and 

two-stage smoothing. 
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Dielectric liner 

T f 
Sheet electron beam 

FIGURE 1. Notional planar dielectric Cherenkov maser geometry. The electron beam 

has total thickness of *, the waveguide half height is TW, and the dielectric liner has 

thickness TW- ~ d .  The bottom dashed line is a symmetry plane. 
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FIGURE 2. Frequency dependence on beam voltage and dielectric constant, for a 2 mm 
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FIGURE 3. Gain versus dielectric constant, for a constant beam power of 75 kW. 
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FIGURE 4. Gain versus beam voltage for a dielectric constant of 30 and for 1 A beam 

current. 
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FIGURE 5. Simulation grid geometry. Index 1 runs from left to right, and index 2 runs 

from bottom to top, for a grid with 23 horizontal cells and 12 vertical cells. Grid cell 

(1,l) is in the lower left corner. The bottom row of cells is offset to establish the 

boundary conditions on the vertical electric field. 
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FIGURE 6. TM field components and locations for grid cell (i,j). 
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A 

Charge density is accumulated here: 

FIGURE 7. One-dimensional model for Morse and Nielson charge-conserving current 

algorithm. Charge density is assigned to mesh intersection points and current density is 

assigned to positions between the mesh intersection points. 
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FIGURE 8. (a) Vertical electric field above sheet beam as a function of time normalized 

to the radial frequency. (b) Axial momentum of the sheet beam within the simulation 

region showing potential depression of the particles. 
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FIGURE 9. Gain versus frequency for the nominal sheet beam DCM case. 
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FIGURE 10. Axial momentum versus axial position in the simulation region. The 

exponential gain factor can be found by measuring the exponential growth in the velocity 

spread of the particles. 
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FIGURE 11. Axial momentum versus axial position in the simulation region, showing 

large signal saturation. This simulations corresponds to about 20% extraction efficiency. 
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